Medical Implants, Ultra-Low Power Sensors, and Energy Harvesting


Advertisement

Medical Implants, Ultra-Low Power Sensors, and Energy Harvesting

<img src='http://www.mdtmag.com/sites/all/themes/adaptivetheme/adaptivetheme_mdt/images/sprite.png'></img>
Mon, 05/05/2014 - 8:10am
<img src='http://www.mdtmag.com/sites/all/themes/adaptivetheme/adaptivetheme_mdt/images/sprite.png'></img>
by Rich Miron, Digi-Key Technical Content Team
<img src='http://www.mdtmag.com/sites/all/themes/adaptivetheme/adaptivetheme_mdt/images/sprite.png'></img>
<img src='http://www.mdtmag.com/sites/all/themes/adaptivetheme/adaptivetheme_mdt/images/sprite.png'></img>

LISTED UNDER:

<img src='http://www.mdtmag.com/sites/all/themes/adaptivetheme/adaptivetheme_mdt/images/sprite.png'></img>Get today's medical design headlines and news electronically - Sign up now!

Medical implants have considerable potential for energy harvesting with the body itself providing the energy source. Today’s ultra-low power circuits and sensors are accelerating efforts to exploit energy harvesting with the objective being autonomous operation and smaller, battery-free designs.

Figure 1: In traditional pacemaker designs, the battery is a significant device component.Figure 1: In traditional pacemaker designs, the battery is a significant device component.Battery-Free

Significant advances in extremely low power, ultra-miniature electronics are generating strong interest in energy harvesting for medical implants. Eliminating batteries or significantly extending their life will result in implants becoming smaller, more convenient, more reliable and longer lasting.

Cardiac pacemakers powered by piezoelectric energy harvested from the heartbeat itself are now viable. A European consortium of researchers led by CEA-Leti in France is developing a low power cardiac pacemaker powered by energy generated by the patient’s heart beats. Eliminating the battery avoids having to replace it periodically and reduces the total device size (Figure 1).

The team’s goal is to reduce the size of the cardiac stimulator to less than 1 cm3, enabling implantation directly onto the epicardium. The consortium is investigating both piezoelectric and electrostatic techniques for the mechanical to electrical conversion process. Initially, the techniques are expected to provide an output power of around 10 µW.

In the US, researchers at the Department of Aerospace Engineering at the University of Michigan are testing a piezoelectric energy harvesting device, about half the size of the batteries currently used in pacemakers (Figure 2), with the potential of using the beating heart to generate enough electricity to power a pacemaker. Trials have shown that it can generate around 10 µW of power, around eight to ten times more than required by modern pacemakers.

Figure 2: Piezoelectric energy harvester that could operate from a beating heart, developed by researchers at the University of MichiganFigure 2: Piezoelectric energy harvester that could operate from a beating heart, developed by researchers at the University of MichiganBiological Battery

Cochlear implants have been available for a few years. However, they typically consist of an internal and external section, with the microphone, sound processor and battery in the external unit.

Research into more highly integrated devices is underway. The University of Utah, for example, has demonstrated a proof of concept of implanting the microphone in the middle ear, partly removing the need for an outer hearing aid. However, the battery still has to be recharged at night by wearing a charger behind the ear.

Elsewhere, researchers are investigating converting chemical energy in the inner ear to power cochlear implants. Massachusetts Institute of Technology (MIT) researchers are working on harnessing the inner ear’s biological battery. The level of electrical voltage is too low however, even to power today’s ultra-low power circuitry. Work still has to be done on storing the generated charge and the power management circuitry, but once operational, the researchers claim the device would be self-sustaining.

Engineers at MIT are also developing glucose fuel cells to power neural implants. The fuel cell operates by stripping electrons from glucose molecules to create a small electric current. Fuel cells integrated with ultra-low power circuitry, onto a silicon chip, enables entirely self-powered devices such as brain implants. Such implants are being developed to help people with spinal cord injuries or who have suffered strokes. Advances in neuromodulation have resulted in implants that influence the nervous system to control pain, and help eliminate the tremor in patients suffering from Parkinson’s disease.

The ingestible Pillcam developed by Given Imaging.The ingestible Pillcam developed by Given Imaging.Ingestible electronic devices, using energy harvesting and/or tiny solid-state batteries, can perform a number of tasks. The ‘Pillcam’, the size of a large vitamin capsule, is used like an endoscope to visualize the digestive system, detecting abnormalities as it passes through, avoiding the alternative lengthy and uncomfortable procedures.

Targeted drug delivery for certain types of cancerous tumors is another important application for ingestible implantable devices. The ability to direct an active device to a precise location, minimizing the drug dosage administered and avoiding damaging adjacent cells, is proving particularly efficacious.

Exploiting body heat to power electronic devices is an obvious candidate for energy harvesting. Chip-based thermoelectric generators (TEGs) are now envisioned that can be inserted under the skin, or in the skull, exploiting the small temperature differences between the brain and skin tissue.

RF technology can also be used to power implants. Radio and electromagnetic signals sent to a small coil in an implantable device can produce enough current for operation. Ongoing research anticipates tiny devices that can be injected directly into the bloodstream, be propelled via an external magnetic field to a location, and power up to perform specific tasks.

Piezoelectric Power

Measurement Specialties supplies piezoelectric film sensors to the OEM medical marketplace for a range of applications. For instance, the LDT-028K piezoelectric film transducer is a multi-purpose device for vibration sensing. The piezo film element produces a usable electrical signal output when forces are applied to the sensing area. The dual wire lead attached to the sensor allows a circuit or monitoring device to process the signal.

An evaluation kit is available that demonstrates the use of these devices, as well as other Measurement Specialties sensors, for experimentation and development of a range of medical and non-medical applications.

Biocompatible Batteries

In some applications, the next best thing to battery-free operation is to use energy harvesting techniques with a rechargeable form of energy storage. The EnerChip thin film, solid-state batteries from Cymbet Corporation are fabricated on a silicon wafer using semiconductor process techniques which enables a bare die to be integrated and packaged with conventional circuitry to save both space and cost. In this form, these batteries are up to one hundred times smaller than a non-rechargeable coin cell and last three times longer.

Packaged parts, ten times smaller than a coin cell, are also available, with or without charge control and power management functionality. The CBC050-M8C, for example, is rated for 50 µAh at 3.8 V and is an ideal onboard power source for very low power circuitry and smart sensors.

The EnerChip parts have been demonstrated as biocompatible for implantable devices. To experiment with these innovative batteries, the CBC-EVAL-05B EnerChip evaluation kit is available, supplied with a selection of batteries that can be connected in various ways. A universal energy harvesting evaluation kit, the CBC-EVAL-09, accepts inputs from piezoelectric, TEG or electromagnetic power sources, and features the EnerChip batteries.

Wireless Communications

Ultra-low power RF transceivers are critical for implantable energy harvesting-based sensors to communicate vital information. The Texas Instruments CC1101 low power, sub-1 GHz RF transceiver, is one example. Primarily intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands, it can easily be programmed to specific frequencies, such as the 400 to 406 MHz range, normally allocated for communication between implantable devices and external equipment.

The RF transceiver is integrated with a configurable baseband modem. In a typical system, the CC1101 is used in conjunction with an ultra-low power microcontroller, such as TI’s MSP430. For ultra-low power battery and energy harvesting applications, it can be used with the TPS62730 step down converter with bypass mode.

Summary

The RF, processing and sensor technology used in medical implants is evolving quickly, becoming smaller, smarter and consuming much lower power. As a direct result, energy harvesting techniques are becoming more viable, enabling longer lasting and more versatile, battery-free implants. Energy sources derived from the body itself include piezoelectric (vibration), chemical and heat differential. For some short-term implantable devices, external energy sources such as RF power can be used.

References:

BCC Research

MarketsandMarkets